Signal-background classification is a central problem in High-Energy Physics (HEP), that plays a major role for the discovery of new fundamental particles. A recent method -- the Parametric Neural Network (pNN) -- leverages multiple signal mass hypotheses as an additional input feature to effectively replace a whole set of individual classifiers, each providing (in principle) the best response for the corresponding mass hypothesis. In this work we aim at deepening the understanding of pNNs in light of real-world usage. We discovered several peculiarities of parametric networks, providing intuition, metrics, and guidelines to them. We further propose an alternative parametrization scheme, resulting in a new parametrized neural network architecture: the AffinePNN; along with many other generally applicable improvements, like the balanced training procedure. Finally, we extensively and empirically evaluate our models on the HEPMASS dataset, along its imbalanced version (called HEPMASS-IMB) we provide here for the first time, to further validate our approach. Provided results are in terms of the impact of the proposed design decisions, classification performance, and interpolation capability, as well.
翻译:信号后地分类是高能物理(HEP)的一个中心问题,它对于发现新的基本粒子起着重要作用。最近的一种方法 -- -- 参数神经网络(PNN) -- -- 利用多重信号质量假设作为额外的输入特征,以有效取代一整套单独的分类员,每个分类员都(原则上)对相应的质量假设作出最佳反应。在这项工作中,我们的目标是根据现实世界的使用情况加深对PNN的理解。我们发现了一些参数网络的特殊性,为它们提供了直觉、度量度和指导方针。我们进一步提出了替代的参数化计划,从而产生了一个新的准光谱神经网络结构:AffiePNNN;以及许多其他普遍适用的改进,如平衡的培训程序。最后,我们广泛和实证地评估了我们关于HEPMASS数据集的模式及其不平衡的版本(称为HOPMASS-IMB),这是我们第一次提供的,以进一步验证我们的方法。如果在拟议的设计决定、分类性表现和内插能力方面得出了结果。