The great success in graph neural networks (GNNs) provokes the question about explainability: Which fraction of the input graph is the most determinant of the prediction? Particularly, parametric explainers prevail in existing approaches because of their stronger capability to decipher the black-box (i.e., the target GNN). In this paper, based on the observation that graphs typically share some joint motif patterns, we propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs. It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance. Moreover, we note that present graph sampling or node-dropping methods usually suffer from the false positive sampling problem. To ameliorate that issue, we design a new augmentation paradigm named MatchDrop. It takes advantage of MatchExplainer to fix the most informative portion of the graph and merely operates graph augmentations on the rest less informative part. We conduct extensive experiments on both synthetic and real-world datasets and show the effectiveness of our MatchExplainer by outperforming all parametric baselines with significant margins. Additional results also demonstrate that our MatchDrop is a general scheme to be equipped with GNNs for enhanced performance.
翻译:图形神经网络(GNNs)的巨大成功引出了关于解释性的问题:输入图的哪一部分是预测的最决定因素? 特别是,参数解析器在现有方法中占上风,因为其破译黑盒(即目标GNN)的能力更强。 在本文中,根据图表通常具有某种共同模式的观察,我们提出了一个新的非参数子图匹配框架,称为MatchExpratelainer,以探索解释性子谱。它将目标图与其他对应实例并列,通过尽可能减少节点对应距离来确定最关键的联合子结构。此外,我们注意到,目前的图形取样或节点滴答方法通常会因错误的积极取样问题而受到影响。为了改善这一问题,我们设计了一个名为MatchDrop的新的增强模型。我们利用MatchExplainer来修正图表中最丰富信息的部分,而仅对其余部分进行图形增强。我们在合成和真实世界的数据集中进行广泛的实验,并展示我们的匹配数据分析器的有效性,通过超越GPMLMA的升级基准来显示我们所有的GMLM的改进结果。