As neural networks become more able to generate realistic artificial images, they have the potential to improve movies, music, video games and make the internet an even more creative and inspiring place. Yet, at the same time, the latest technology potentially enables new digital ways to lie. In response, the need for a diverse and reliable toolbox arises to identify artificial images and other content. Previous work primarily relies on pixel-space CNN or the Fourier transform. To the best of our knowledge, wavelet-based gan analysis and detection methods have been absent thus far. This paper aims to fill this gap and describes a wavelet-based approach to gan-generated image analysis and detection. We evaluate our method on FFHQ, CelebA, and LSUN source identification problems and find improved or competitive performance.
翻译:随着神经网络更有能力生成现实的人工图像,它们有潜力改进电影、音乐、视频游戏,使互联网成为更具创造性和启发性的地方;然而,与此同时,最新技术有可能使新的数字方法产生谎言;作为回应,需要有一个多样和可靠的工具箱来识别人工图像和其他内容;先前的工作主要依靠像素空间CN或Fourier变异;根据我们的知识,迄今为止还没有使用波盘式甘蔗分析和探测方法;本文旨在填补这一空白,并描述一种以波盘为基础的方法来进行人造图像分析和探测;我们评估了我们关于FFHQ、CelibA和LSUN的识别方法,并发现改进或竞争性能。