With the increasing emphasis on the safe autonomy for robots, model-based safe control approaches such as Control Barrier Functions have been extensively studied to ensure guaranteed safety during inter-robot interactions. In this paper, we introduce the Parametric Control Barrier Function (Parametric-CBF), a novel variant of the traditional Control Barrier Function to extend its expressivity in describing different safe behaviors among heterogeneous robots. Instead of assuming cooperative and homogeneous robots using the same safe controllers, the ego robot is able to model the neighboring robots' underlying safe controllers through different Parametric-CBFs with observed data. Given learned parametric-CBF and proved forward invariance, it provides greater flexibility for the ego robot to better coordinate with other heterogeneous robots with improved efficiency while enjoying formally provable safety guarantees. We demonstrate the usage of Parametric-CBF in behavior prediction and adaptive safe control in the ramp merging scenario from the applications of autonomous driving. Compared to traditional CBF, Parametric-CBF has the advantage of capturing varying drivers' characteristics given richer description of robot behavior in the context of safe control. Numerical simulations are given to validate the effectiveness of the proposed method.


翻译:随着对机器人安全自主的日益重视,对控制屏障功能等以模型为基础的安全控制方法进行了广泛的研究,以确保机器人之间相互作用的安全。在本文中,我们引入了参数控制屏障功能,这是传统控制屏障功能的一种新颖变体,以扩展其在描述各异机器人之间不同安全行为的表达性。使用同一安全控制器的合作和同质机器人,而自我机器人则能够通过不同参数 CBF 来模拟相邻机器人的安全控制器。根据所学到的参数-CBF 和已证明的前向性,它为自我机器人提供了更大的灵活性,以更好地与其他复合机器人协调,提高效率,同时享有正式的安全保障。我们展示了在行为预测中使用参数控制屏障安全控制时使用与自主驾驶应用的组合情景。与传统的CBFF 相比,由于在安全控制方面对机器人行为作了更丰富的描述,Paracit-CBF的好处是捕捉到不同司机的特性。Numerical模拟是为了验证拟议方法的有效性。

0
下载
关闭预览

相关内容

《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
53+阅读 · 2022年3月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员