Several strategies have been developed recently to ensure valid inference after model selection; some of these are easy to compute, while others fare better in terms of inferential power. In this paper, we consider a selective inference framework for Gaussian data. We propose a new method for inference through approximate maximum likelihood estimation. Our goal is to: (i) achieve better inferential power with the aid of randomization, (ii) bypass expensive MCMC sampling from exact conditional distributions that are hard to evaluate in closed forms. We construct approximate inference, e.g., p-values, confidence intervals etc., by solving a fairly simple, convex optimization problem. We illustrate the potential of our method across wide-ranging values of signal-to-noise ratio in simulations. On a cancer gene expression data set we find that our method improves upon the inferential power of some commonly used strategies for selective inference.
翻译:最近制定了若干战略,以确保在选择模型后进行有效推断;其中一些比较容易计算,而另一些则比较容易计算,在推断能力方面则比较好。在本文中,我们考虑了高斯数据有选择的推断框架。我们提出一种新的方法,通过估计最大可能性来进行推断。我们的目标是:(一) 在随机化的帮助下获得更好的推断力,(二) 绕过难以以封闭形式评估的精确有条件分布的昂贵的MCMC取样。我们通过解决一个很简单的convex优化问题来构建大致的推断,例如p-values、信任间隔等。我们展示了我们在模拟中在信号对噪音比率的广泛值方面的潜力。在癌症基因表达数据集中,我们发现我们的方法改进了某些常用的选择性推断策略的推断力。