The state-of-the-art in discriminative unsupervised surface anomaly detection relies on external datasets for synthesizing anomaly-augmented training images. Such approaches are prone to failure on near-in-distribution anomalies since these are difficult to be synthesized realistically due to their similarity to anomaly-free regions. We propose an architecture based on quantized feature space representation with dual decoders, DSR, that avoids the image-level anomaly synthesis requirement. Without making any assumptions about the visual properties of anomalies, DSR generates the anomalies at the feature level by sampling the learned quantized feature space, which allows a controlled generation of near-in-distribution anomalies. DSR achieves state-of-the-art results on the KSDD2 and MVTec anomaly detection datasets. The experiments on the challenging real-world KSDD2 dataset show that DSR significantly outperforms other unsupervised surface anomaly detection methods, improving the previous top-performing methods by 10% AP in anomaly detection and 35% AP in anomaly localization.
翻译:在不加监督的有区别表面异常现象探测中,最先进的有区别性表面异常现象探测依靠外部数据集来合成有异常现象的强化培训图像。这些方法容易在接近分布的异常现象上失败,因为这些异常现象与无异常现象的区域相似,因此难以现实地加以合成。我们提议了一个基于量化地物空间代表结构,该结构有双重分解器,DSR,该结构避免了图像层面异常现象合成要求。在不对异常现象的视觉特性作出任何假设的情况下,DSR在特征层面生成了异常现象,方法是对已学的有孔化地物空间进行取样,从而允许有控制地生成近分布的异常现象。DSR实现了KSDD2和MVTec异常探测数据集的最新结果。关于具有挑战性的真实世界KSDD2数据集的实验表明,DSR大大超越了其他非超强性表面异常异常现象检测方法,在异常现象检测中改进了先前的顶级方法,即10%的AP在异常现象检测中改进了10%的顶级方法,在异常地方化中改进了35%的AP。