In this work, we propose a novel method to improve the generalization ability of CNN-based face forgery detectors. Our method considers the feature anomalies of forged faces caused by the prevalent blending operations in face forgery algorithms. Specifically, we propose a weakly supervised Second Order Local Anomaly (SOLA) learning module to mine anomalies in local regions using deep feature maps. SOLA first decomposes the neighborhood of local features by different directions and distances and then calculates the first and second order local anomaly maps which provide more general forgery traces for the classifier. We also propose a Local Enhancement Module (LEM) to improve the discrimination between local features of real and forged regions, so as to ensure accuracy in calculating anomalies. Besides, an improved Adaptive Spatial Rich Model (ASRM) is introduced to help mine subtle noise features via learnable high pass filters. With neither pixel level annotations nor external synthetic data, our method using a simple ResNet18 backbone achieves competitive performances compared with state-of-the-art works when evaluated on unseen forgeries.
翻译:在这项工作中,我们提出了改进CNN面部伪造探测器的通用能力的新办法。我们的方法考虑到面部伪造算法中普遍存在的混合操作造成的伪造面孔的异常特征。具体地说,我们提出一个监督不力的二级局部异常学模块,用于使用深层地貌图在本地区域挖掘异常现象。SOLA首先通过不同方向和距离分解附近地方特征,然后计算出第一和第二顺序地方异常图,为分类者提供更普遍的伪造痕迹。我们还提议了一个地方增强模块(LEM),以改善真实区域和伪造区域地方特征之间的差别,从而确保计算异常现象的准确性。此外,我们采用改进的适应性空间丰富模型(ASRM),通过可学习的高传球过滤器帮助挖掘微妙的噪音特征。我们使用简单的ResNet18主干线的方法既无像级说明,也无外部合成数据,在对看不见伪造进行评价时,我们使用的方法与最新工艺作品相比,具有竞争力。