We identify a family of binary codes whose structure is similar to Reed-Muller (RM) codes and which include RM codes as a strict subclass. The codes in this family are denoted as $C_n(r,m)$, and their duals are denoted as $B_n(r,m)$. The length of these codes is $n^m$, where $n \geq 2$, and $r$ is their `order'. When $n=2$, $C_n(r,m)$ is the RM code of order $r$ and length $2^m$. The special case of these codes corresponding to $n$ being an odd prime was studied by Berman (1967) and Blackmore and Norton (2001). Following the terminology introduced by Blackmore and Norton, we refer to $B_n(r,m)$ as the Berman code and $C_n(r,m)$ as the dual Berman code. We identify these codes using a recursive Plotkin-like construction, and we show that these codes have a rich automorphism group, they are generated by the minimum weight codewords, and that they can be decoded up to half the minimum distance efficiently. Using a result of Kumar et al. (2016), we show that these codes achieve the capacity of the binary erasure channel (BEC) under bit-MAP decoding. Furthermore, except double transitivity, they satisfy all the code properties used by Reeves and Pfister to show that RM codes achieve the capacity of binary-input memoryless symmetric channels. Finally, when $n$ is odd, we identify a large class of abelian codes that includes $B_n(r,m)$ and $C_n(r,m)$ and which achieves BEC capacity.


翻译:我们发现一个二元代码的家族,其结构与Reed-Muler(RM)代码相似,其中包括RM代码,这是一个严格的亚级。这个家族的代码被标为$C_n(r,m)$,其双元代码被标为$B_n(r,m)美元。这些代码的长度是$00美元,其中美元为2美元,美元为$C_n(r,m)是它们的“顺序 ” 。当美元=2美元时,美元C_n(r,m)是RM订单的代码 $r和长度为2美元。这些代码的特性被标为$n(r,m) 美元(r,m) 美元。这些代码的特例被伯曼(1967年)和布莱克莫尔(Blackmore)和诺顿(Norton)所采用,我们称之为“r,r,m(m)美元” 美元代码的长度为$C_n(r,m) 美元。我们用一个双元代码来识别这些代码, 并显示这些代码的精度的精度结构, 当我们使用一个精度的精度的精度代码时, 数字的精度的精度的精度显示一个精度的精度的精度的精度值的精度, 的精度, 的精度显示一个精度的精度值的精度的精度的精度的精度的精度, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月2日
Complexity of Representations in Deep Learning
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员