Recent studies have proven that DNNs, unlike human vision, tend to exploit texture information rather than shape. Such texture bias is one of the factors for the poor generalization performance of DNNs. We observe that the texture bias negatively affects not only in-domain generalization but also out-of-distribution generalization, i.e., Domain Generalization. Motivated by the observation, we propose a new framework to reduce the texture bias of a model by a novel optimization-based data augmentation, dubbed Stylized Dream. Our framework utilizes adaptive instance normalization (AdaIN) to augment the style of an original image yet preserve the content. We then adopt a regularization loss to predict consistent outputs between Stylized Dream and original images, which encourages the model to learn shape-based representations. Extensive experiments show that the proposed method achieves state-of-the-art performance in out-of-distribution settings on public benchmark datasets: PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet.
翻译:最近的研究证明,DNN与人类的视野不同,倾向于利用纹理信息而不是形状。这种纹理偏好是DNN不善于概括性表现的因素之一。我们观察到,纹理偏向不仅对主域一般化造成负面影响,而且对传播外的概括性影响,即Dmain一般化。我们根据观察,提出了一个新的框架,通过一种新型的基于优化的数据增强,称为Styld Stylized Dream,来减少模型的纹理偏向。我们的框架利用适应性实例(AdaIN)来增加原始图像的风格,但保存内容。我们随后采用一种正规化损失,以预测Stylized Dream和原始图像之间的一致产出,这鼓励模型学习基于形状的表述。广泛的实验表明,拟议的方法在公共基准数据集(PACS、VLCS、OfficeHome、TerIncognita和DomainNet)上实现了在分配外环境最先进的表现。