Inertial Measurement Units (IMU) are commonly used in inertial attitude estimation from engineering to medical sciences. There may be disturbances and high dynamics in the environment of these applications. Also, their motion characteristics and patterns also may differ. Many conventional filters have been proposed to tackle the inertial attitude estimation problem based on IMU measurements. There is no generalization over motion and environmental characteristics in these filters. As a result, the presented conventional filters will face various motion characteristics and patterns, which will limit filter performance and need to optimize the filter parameters for each situation. In this paper, two end-to-end deep-learning models are proposed to solve the problem of real-time attitude estimation by using inertial sensor measurements, which are generalized to motion patterns, sampling rates, and environmental disturbances. The proposed models incorporate accelerometer and gyroscope readings as inputs, which are collected from a combination of seven public datasets. The models consist of convolutional neural network (CNN) layers combined with Bi-Directional Long-Short Term Memory (LSTM) followed by a Fully Forward Neural Network (FFNN) to estimate the quaternion. To evaluate the validity and reliability, we have performed an extensive and comprehensive evaluation over seven publicly available datasets, which consist of more than 120 hours and 200 kilometers of IMU measurements. The results show that the proposed method outperforms the state-of-the-art methods in terms of accuracy and robustness. Furthermore, it demonstrates that this model generalizes better than other methods over various motion characteristics and sensor sampling rates.


翻译:惰性测量单位(IMU)通常用于从工程到医学的惯性姿态估测,这些应用环境可能存在扰动和高度动态。它们的运动特性和模式也可能不同。许多常规过滤器已经提出,以解决基于IMU测量的惯性姿态估测问题。这些过滤器没有关于运动和环境特性的概括性。因此,提出的常规过滤器将面临各种运动特点和模式,这将限制过滤性能,并需要优化每种情况的过滤参数。在本文件中,提出了两个端到端的深层学习模型,以便通过使用惯性传感器测量方法解决实时准确性估测问题,这些测量方法一般为运动模式、取样率和环境扰动。提议的模型将加速度计和陀螺仪读作为投入,这些模型将面临各种运动特征和模式,这些模型将限制过滤性功能,并需要优化每种情况的过滤性参数。在本文件中,采用两个端到端的端至端的精度测度度度度测度度度度度度度度度度度度测算方法(FFNUNUN)将包含比全向神经网络的全局性总温度测测测测测测算结果,并显示比全局性测测测测测测测测测测算的120的模型。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员