Physics-Informed Neural Networks (PINN) are neural networks that encode the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network training. PINNs have emerged as an essential tool to solve various challenging problems, such as computing linear and non-linear PDEs, completing data assimilation and uncertainty quantification tasks. In this work, we focus on evaluating the PINN potential to replace or accelerate traditional approaches for solving linear systems. We solve the Poisson equation, one of the most critical and computational-intensive tasks in scientific computing, with different source terms. We test and evaluate PINN performance under different configurations (depth, activation functions, input data set distribution, and transfer learning impact). We show how to integrate PINN with traditional scientific computing approaches, such as multigrid and Gauss-Seidel methods. While the accuracy and computational performance is still a limiting factor for the direct use of PINN for solving, hybrid strategies are a viable option for the development of a new class of linear solvers combining emerging deep-learning and traditional scientific computing approaches.
翻译:物理内建神经网络(PINN)是神经网络,作为神经网络培训的一部分,将诸如部分差异等方程式(PDE)等有关方程式的问题归结为神经网络培训的一部分。 PINN作为解决各种挑战性问题的基本工具出现,例如计算线性和非线性PDE,完成数据同化和不确定性量化任务。在这项工作中,我们侧重于评价PINN在取代或加速解决线性系统的传统方法方面的潜力。我们用不同的来源术语解决Poisson方程式,这是科学计算中最关键和计算密集型的任务之一。我们测试和评价PINN在不同配置下的业绩(深度、激活功能、输入数据集分布和转移学习影响),我们展示如何将PINN与传统的科学计算方法(如多电网和高斯-Seidel方法)相结合。虽然准确性和计算性仍然是直接使用PINN解决的限制因素,但混合战略是发展新型线性解决方案的可行选择,同时结合新兴的深层次和传统科学计算方法。