Electroanatomical maps are a key tool in the diagnosis and treatment of atrial fibrillation. Current approaches focus on the activation times recorded. However, more information can be extracted from the available data. The fibers in cardiac tissue conduct the electrical wave faster, and their direction could be inferred from activation times. In this work, we employ a recently developed approach, called physics informed neural networks, to learn the fiber orientations from electroanatomical maps, taking into account the physics of the electrical wave propagation. In particular, we train the neural network to weakly satisfy the anisotropic eikonal equation and to predict the measured activation times. We use a local basis for the anisotropic conductivity tensor, which encodes the fiber orientation. The methodology is tested both in a synthetic example and for patient data. Our approach shows good agreement in both cases, with an RMSE of 2.2ms on the in-silico data and outperforming a state of the art method on the patient data. The results show a first step towards learning the fiber orientations from electroanatomical maps with physics-informed neural networks.
翻译:电动神经图是诊断和治疗月性纤维化变化的关键工具。 目前的方法侧重于所记录的激活时间。 但是, 可以从现有数据中提取更多信息。 心脏组织纤维能更快地控制电波, 其方向可以从激活时间中推断出来。 在这项工作中, 我们使用最近开发的方法, 称为物理知情神经网络, 从电动神经图中学习纤维方向, 同时考虑到电波传播的物理学。 特别是, 我们训练神经网络, 以弱化地满足动脉式电子子方程式, 并预测测得的激活时间。 我们使用局部基础, 用于记录纤维方向的动脉导振动温度。 该方法在合成例子和病人数据中进行测试。 我们的方法在两种情况下都表现出良好的一致, 其方法是在硅数据方面有2.2米的RMSE, 并优于病人数据方面的艺术方法状态。 其结果显示, 从对物理知情神经网络的电动脉冲图中学习纤维方向的第一步。