Hazards can be exposed by HAZOP as text information, and studying their classification is of great significance to the development of industrial informatics, which is conducive to safety early warning, decision support, policy evaluation, etc. However, there is no research on this important field at present. In this paper, we propose a novel model termed DLGM via deep learning for hazard classification. Specifically, first, we leverage BERT to vectorize the hazard and treat it as a type of time series (HTS). Secondly, we build a grey model FSGM(1, 1) to model it, and get the grey guidance in the sense of the structural parameters. Finally, we design a hierarchical-feature fusion neural network (HFFNN) to investigate the HTS with grey guidance (HTSGG) from three themes, where, HFFNN is a hierarchical structure with four types of modules: two feature encoders, a gating mechanism, and a deepening mechanism. We take 18 industrial processes as application cases and launch a series of experiments. The experimental results prove that DLGM has promising aptitudes for hazard classification and that FSGM(1, 1) and HFFNN are effective. We hope our research can contribute added value and support to the daily practice in industrial safety.


翻译:通过HAZOP的文字信息,HAZOP可以暴露危险,HAZOP可以将危险作为文字信息,研究它们的分类对于工业信息学的发展具有重大意义,有利于安全预警、决策支持、政策评估等。然而,目前还没有关于这一重要领域的研究。在本文件中,我们提出一个名为DLGM的新型模型,通过深入学习危险分类方法来进行DLGM。具体地说,我们利用BERT来将危险传播,并将其作为一种类型的时间序列(HTS)。第二,我们建立一个灰色模式FSGM(1,1,1)来模拟它,并获得结构参数意义上的灰色指导。最后,我们设计了一个等级-地性聚合神经网络(HFFNNNN),从三个主题(HTSGGG)中用灰色指导(HTSGGGG)来调查HTS(HTSGGGG),这三个主题,在那里,HFFNNN是一个分级结构,有四类单元:两个特征编码编码,一个格机制,一个深化的机制。我们把18个工业过程作为应用案例,并进行一系列实验试验。我们用。我们把18个工业过程作为试验结果。实验结果证明DGMGM可以增加危险分类的优点,并且支持日常工业安全。我们的研究希望我们的研究有助于。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员