In the problem of binary quantum channel discrimination with product inputs, the supremum of all type II error exponents for which the optimal type I errors go to zero is equal to the Umegaki channel relative entropy, while the infimum of all type II error exponents for which the optimal type I errors go to one is equal to the infimum of the sandwiched channel R\'enyi $\alpha$-divergences over all $\alpha>1$. We prove the equality of these two threshold values (and therefore the strong converse property for this problem) using a minimax argument based on a newly established continuity property of the sandwiched R\'enyi divergences. Motivated by this, we give a detailed analysis of the continuity properties of various other quantum (channel) R\'enyi divergences, which may be of independent interest.
翻译:暂无翻译