In this work, we propose a self-improving artificial intelligence system to enhance the safety performance of reinforcement learning (RL)-based autonomous driving (AD) agents using black-box verification methods. RL algorithms have become popular in AD applications in recent years. However, the performance of existing RL algorithms heavily depends on the diversity of training scenarios. A lack of safety-critical scenarios during the training phase could result in poor generalization performance in real-world driving applications. We propose a novel framework in which the weaknesses of the training set are explored through black-box verification methods. After discovering AD failure scenarios, the RL agent's training is re-initiated via transfer learning to improve the performance of previously unsafe scenarios. Simulation results demonstrate that our approach efficiently discovers safety failures of action decisions in RL-based adaptive cruise control (ACC) applications and significantly reduces the number of vehicle collisions through iterative applications of our method. The source code is publicly available at https://github.com/data-and-decision-lab/self-improving-RL.


翻译:在这项工作中,我们提出一个自我改进人工智能系统,用黑盒核查方法提高强化学习(RL)自主驾驶(AD)代理器的安全性能,使用黑盒核查方法。近年来,RL算法在AD应用中变得很流行。但是,现有的RL算法的性能在很大程度上取决于培训的情景的多样性。培训阶段缺乏安全临界情景可能会导致现实世界驾驶应用软件的概括性表现不佳。我们提议了一个新颖的框架,通过黑盒核查方法探索成套培训的弱点。在发现AD失败情形后,RL代理器的培训通过转让学习重新启动,以改善先前不安全情景的性能。模拟结果表明,我们的方法有效地发现,在基于RL的适应性巡航控制(ACC)应用中,行动决定的安全性失灵,并通过我们方法的迭接应用,大大减少车辆碰撞的次数。源码公布于https://github.com/data-and-decis-lab/self-impal-RL。</s>

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员