In environmental science applications, extreme events frequently exhibit a complex spatio-temporal structure, which is difficult to describe flexibly and estimate in a computationally efficient way using state-of-art parametric extreme-value models. In this paper, we propose a computationally-cheap non-parametric approach to investigate the probability distribution of temporal clusters of spatial extremes, and study within-cluster patterns with respect to various characteristics. These include risk functionals describing the overall event magnitude, spatial risk measures such as the size of the affected area, and measures representing the location of the extreme event. Under the framework of functional regular variation, we verify the existence of the corresponding limit distributions as the considered events become increasingly extreme. Furthermore, we develop non-parametric estimators for the limiting expressions of interest and show their asymptotic normality under appropriate mixing conditions. Uncertainty is assessed using a multiplier block bootstrap. The finite-sample behavior of our estimators and the bootstrap scheme is demonstrated in a spatio-temporal simulated example. Our methodology is then applied to study the spatio-temporal dependence structure of high-dimensional sea surface temperature data for the southern Red Sea. Our analysis reveals new insights into the temporal persistence, and the complex hydrodynamic patterns of extreme sea temperature events in this region.
翻译:在环境科学应用中,极端事件往往表现出复杂的时空结构,很难用最先进的极端价值参数模型以计算有效的方式灵活地描述和估计,难以用最先进的极端价值参数模型进行灵活和估计。在本文件中,我们提议采用一种计算式粗略的非参数性方法来调查空间极端时间组群的概率分布,并研究与各种特征有关的集群内模式。其中包括描述总体事件规模的风险功能、受影响地区面积大小等空间风险措施以及代表极端事件位置的措施。在功能性经常变异的框架内,我们核查是否存在着相应的极限分布,因为所考虑的事件越来越极端。此外,我们为限制兴趣的表达方式制定了非参数性估计值,并表明它们在适当的混合条件下是否具有非参数性正常性。对不确定性进行了评估,使用了一个增量块靴子陷阱。我们的估测员和靴子系统在测得的有限性行为模拟了极端事件的位置。在功能经常变异的框架内,我们随后运用了方法,以研究海平面温度模型研究海平面高度、高度海平面的海压数据对海中高度对海流温度的深度度数据分析。