In environmental science applications, extreme events frequently exhibit a complex spatio-temporal structure, which is difficult to describe flexibly and estimate in a computationally efficient way using state-of-art parametric extreme-value models. In this paper, we propose a computationally-cheap non-parametric approach to investigate the probability distribution of temporal clusters of spatial extremes, and study within-cluster patterns with respect to various characteristics. These include risk functionals describing the overall event magnitude, spatial risk measures such as the size of the affected area, and measures representing the location of the extreme event. Under the framework of functional regular variation, we verify the existence of the corresponding limit distributions as the considered events become increasingly extreme. Furthermore, we develop non-parametric estimators for the limiting expressions of interest and show their asymptotic normality under appropriate mixing conditions. Uncertainty is assessed using a multiplier block bootstrap. The finite-sample behavior of our estimators and the bootstrap scheme is demonstrated in a spatio-temporal simulated example. Our methodology is then applied to study the spatio-temporal dependence structure of high-dimensional sea surface temperature data for the southern Red Sea. Our analysis reveals new insights into the temporal persistence, and the complex hydrodynamic patterns of extreme sea temperature events in this region.


翻译:在环境科学应用中,极端事件往往表现出复杂的时空结构,很难用最先进的极端价值参数模型以计算有效的方式灵活地描述和估计,难以用最先进的极端价值参数模型进行灵活和估计。在本文件中,我们提议采用一种计算式粗略的非参数性方法来调查空间极端时间组群的概率分布,并研究与各种特征有关的集群内模式。其中包括描述总体事件规模的风险功能、受影响地区面积大小等空间风险措施以及代表极端事件位置的措施。在功能性经常变异的框架内,我们核查是否存在着相应的极限分布,因为所考虑的事件越来越极端。此外,我们为限制兴趣的表达方式制定了非参数性估计值,并表明它们在适当的混合条件下是否具有非参数性正常性。对不确定性进行了评估,使用了一个增量块靴子陷阱。我们的估测员和靴子系统在测得的有限性行为模拟了极端事件的位置。在功能经常变异的框架内,我们随后运用了方法,以研究海平面温度模型研究海平面高度、高度海平面的海压数据对海中高度对海流温度的深度度数据分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月19日
Arxiv
0+阅读 · 2023年2月18日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员