Even when the causal graph underlying our data is unknown, we can use observational data to narrow down the possible values that an average treatment effect (ATE) can take by (1) identifying the graph up to a Markov equivalence class; and (2) estimating that ATE for each graph in the class. While the PC algorithm can identify this class under strong faithfulness assumptions, it can be computationally prohibitive. Fortunately, only the local graph structure around the treatment is required to identify the set of possible ATE values, a fact exploited by local discovery algorithms to improve computational efficiency. In this paper, we introduce Local Discovery using Eager Collider Checks (LDECC), a new local causal discovery algorithm that leverages unshielded colliders to orient the treatment's parents differently from existing methods. We show that there exist graphs where LDECC exponentially outperforms existing local discovery algorithms and vice versa. Moreover, we show that LDECC and existing algorithms rely on different faithfulness assumptions, leveraging this insight to weaken the assumptions for identifying the set of possible ATE values.
翻译:即便数据背后的因果图表未知, 我们也可以使用观测数据缩小平均处理效果( ATE) 可能包含的值, 具体方法是 (1) 确定图表, 直至一个 Markov 等效类; (2) 估计每类图的 ATE 。 虽然 PC 算法可以在强烈的忠实性假设下识别该类, 但它在计算上可能令人望而却步。 幸运的是, 只有治疗周围的本地图形结构才需要确定一套可能的 ATE 值, 这是本地发现算法用来提高计算效率的一个事实。 在本文中, 我们引入了一种本地发现功能, 使用 Eager 相竞器检查( LDECCC), 这是一种新的本地因果发现算法, 利用未屏蔽的对切算法将治疗对象的父母定位为与现有方法不同的方向。 我们显示, 有图表显示 LDECC 和现有算法在哪些情况下会指数指数指数指数比现有的当地发现算法, 以及反之。 此外, 我们显示 LDEC 和现有的算法依靠不同的准确性假设, 利用这种洞察力来削弱假设, 确定可能的 ATE 。