Systolic arrays and shared-L1-memory manycore clusters are commonly used architectural paradigms that offer different trade-offs to accelerate parallel workloads. While the first excel with regular dataflow at the cost of rigid architectures and complex programming models, the second are versatile and easy to program but require explicit dataflow management and synchronization. This work aims at enabling efficient systolic execution on shared-L1-memory manycore clusters. We devise a flexible architecture where small and energy-efficient RISC-V cores act as the systolic array's processing elements (PEs) and can form diverse, reconfigurable systolic topologies through queues mapped in the cluster's shared memory. We introduce two low-overhead RISC-V ISA extensions for efficient systolic execution, namely Xqueue and Queue-linked registers (QLRs), which support queue management in hardware. The Xqueue extension enables single-instruction access to shared-memory-mapped queues, while QLRs allow implicit and autonomous access to them, relieving the cores of explicit communication instructions. We demonstrate Xqueue and QLRs in MemPool, an open-source shared-memory cluster with 256 PEs, and analyze the hybrid systolic-shared-memory architecture's trade-offs on several DSP kernels with diverse arithmetic intensity. For an area increase of just 6%, our hybrid architecture can double MemPool's compute unit utilization, reaching up to 73%. In typical conditions (TT/0.80V/25{\deg}C), in a 22 nm FDX technology, our hybrid architecture runs at 600 MHz with no frequency degradation and is up to 65% more energy efficient than the shared-memory baseline, achieving up to 208 GOPS/W, with up to 63% of power spent in the PEs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员