We propose a new data-driven method to learn the dynamics of an unknown hyperbolic system of conservation laws using deep neural networks. Inspired by classical methods in numerical conservation laws, we develop a new conservative form network (CFN) in which the network learns the flux function of the unknown system. Our numerical examples demonstrate that the CFN yields significantly better prediction accuracy than what is obtained using a standard non-conservative form network, even when it is enhanced with constraints to promote conservation. In particular, solutions obtained using the CFN consistently capture the correct shock propagation speed without introducing non-physical oscillations into the solution. They are furthermore robust to noisy and sparse observation environments.
翻译:我们建议采用新的数据驱动方法,利用深层神经网络来学习未知的双曲保护法系统的动态。在数字保护法经典方法的启发下,我们开发了一个新的保守形式网络(CFN),网络在其中学习未知系统的通量功能。我们的数字实例表明,CFN的预测准确性大大高于使用标准非保守形式网络获得的预测准确性,即使由于促进保护的制约而有所加强。特别是,利用CFN获得的解决方案在不将非物理振荡引入解决方案的情况下,始终捕捉正确的冲击传播速度。它们对于噪音和稀少的观测环境来说更加强大。