In the average-case $k$-SUM problem, given $r$ integers chosen uniformly at random from $\{0,\ldots,M-1\}$, the objective is to find a set of $k$ numbers that sum to $0$ modulo $M$ (this set is called a solution). In the related $k$-XOR problem, given $k$ uniformly random Boolean vectors of length $\log{M}$, the objective is to find a set of $k$ of them whose bitwise-XOR is the all-zero vector. Both of these problems have widespread applications in the study of fine-grained complexity and cryptanalysis. The feasibility and complexity of these problems depends on the relative values of $k$, $r$, and $M$. The dense regime of $M \leq r^k$, where solutions exist with high probability, is quite well-understood and we have several non-trivial algorithms and hardness conjectures here. Much less is known about the sparse regime of $M\gg r^k$, where solutions are unlikely to exist. The best answers we have for many fundamental questions here are limited to whatever carries over from the dense or worst-case settings. We study the planted $k$-SUM and $k$-XOR problems in the sparse regime. In these problems, a random solution is planted in a randomly generated instance and has to be recovered. As $M$ increases past $r^k$, these planted solutions tend to be the only solutions with increasing probability, potentially becoming easier to find. We show several results about the complexity and applications of these problems.


翻译:在平均情况下的$k$-SUM问题中,给定从$\{0,\ldots,M-1\}$中均匀随机选择的$r$个整数,目标是找到一个和为$0$模$M$的$k$个数的集合(这个集合被称为一个解)。在相关的$k$-XOR问题中,给定长度为$\log{M}$的$k$个均匀随机布尔向量,目标是找到$k$个它们的按位异或为全零向量的集合。这些问题在细粒度复杂度和密码分析的研究中具有广泛的应用。这些问题的可行性和复杂性取决于$k$、$r$和$M$的相对值。在$M \leq r^k$的密集区域中,在这里,解决方案很可能存在,我们有几个非平凡算法和硬度猜想。关于$M\gg r^k$的稀疏区域,解决方案不太可能存在,我们所知道的许多基本问题的最佳答案仅限于从密集或最坏情况下的设置中继承。我们研究了在稀疏区域中种植的$k$-SUM和$k$-XOR问题。在这些问题中,一种随机解决方案在随机生成的实例中被种植,并需要被恢复。随着$M$超过$r^k$,这些种植的解决方案往往是唯一的解决方案,其概率越来越高,可能更容易找到。我们展示了关于这些问题的复杂度和应用的几个结果。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
75+阅读 · 2021年3月16日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
42+阅读 · 2020年7月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员