To determine if a skill can be executed in any given environment, a robot needs to learn the preconditions for the skill. As robots begin to operate in dynamic and unstructured environments, precondition models will need to generalize to variable number of objects with different shapes and sizes. In this work, we focus on learning precondition models for manipulation skills in unconstrained environments. Our work is motivated by the intuition that many complex manipulation tasks, with multiple objects, can be simplified by focusing on less complex pairwise object relations. We propose an object-relation model that learns continuous representations for these pairwise object relations. Our object-relation model is trained completely in simulation, and once learned, is used by a separate precondition model to predict skill preconditions for real world tasks. We evaluate our precondition model on $3$ different manipulation tasks: sweeping, cutting, and unstacking. We show that our approach leads to significant improvements in predicting preconditions for all 3 tasks, across objects of different shapes and sizes.
翻译:为了确定在任何特定环境中能否执行技能,机器人需要学习技能的先决条件。当机器人开始在动态和无结构的环境中运作时,前提条件模型需要将不同形状和大小的物体数目加以概括化。在这项工作中,我们侧重于学习在不受限制的环境中操作技能的先决条件模型。我们的工作受直觉的驱动,即许多复杂的操作任务,包括多个物体,可以通过注重较不复杂的对对称对象关系来简化。我们提出了一个目标关系模型,以学习这些对称对象关系的连续表述。我们的对象关系模型在模拟中完全接受训练,一旦学习,就被一个单独的前提条件模型用来预测真实世界任务的技能先决条件。我们评估我们关于3美元不同操作任务的先决条件模型:扫瞄、切割和解压缩。我们表明,我们的方法可以大大改进所有3项任务的先决条件,跨越不同形状和大小的物体。