Shared e-mobility services have been widely tested and piloted in cities across the globe, and already woven into the fabric of modern urban planning. This paper studies a practical yet important problem in those systems: how to deploy and manage their infrastructure across space and time, so that the services are ubiquitous to the users while sustainable in profitability. However, in real-world systems evaluating the performance of different deployment strategies and then finding the optimal plan is prohibitively expensive, as it is often infeasible to conduct many iterations of trial-and-error. We tackle this by designing a high-fidelity simulation environment, which abstracts the key operation details of the shared e-mobility systems at fine-granularity, and is calibrated using data collected from the real-world. This allows us to try out arbitrary deployment plans to learn the optimal given specific context, before actually implementing any in the real-world systems. In particular, we propose a novel multi-agent neural search approach, in which we design a hierarchical controller to produce tentative deployment plans. The generated deployment plans are then tested using a multi-simulation paradigm, i.e., evaluated in parallel, where the results are used to train the controller with deep reinforcement learning. With this closed loop, the controller can be steered to have higher probability of generating better deployment plans in future iterations. The proposed approach has been evaluated extensively in our simulation environment, and experimental results show that it outperforms baselines e.g., human knowledge, and state-of-the-art heuristic-based optimization approaches in both service coverage and net revenue.


翻译:共享电子移动服务已经在全球各城市进行了广泛的测试和试点,并且已经融入现代城市规划结构。本文研究这些系统中一个实际但重要的问题:如何在空间和时间间部署和管理其基础设施,从而使服务对用户来说是无处不在的,同时具有可持续的盈利能力。然而,在现实世界的系统中,评估不同部署战略的绩效,然后找到最佳计划,费用太高,因为进行许多试探和试探的迭代往往不可行。我们通过设计高不洁的模拟环境来解决这个问题。我们设计了一个高超模化模拟环境,在微调的情况下,将共享的电子移动系统的关键操作方法摘要归纳起来,并使用从真实世界收集的数据加以校准。这使我们能够尝试任意部署计划,以了解最佳的具体背景,然后在实际执行任何实际世界系统之前,我们建议一种新型的多剂神经搜索方法,其中我们设计一个级控制器来制作临时部署计划。随后,我们用一个电子智能模拟的模拟环境模拟环境测试了共同电子移动系统的主要操作方法, 并且利用从实际收集的更精确的模型, 来评估,在深度的循环中, 将人类的循环中, 来评估。在进行更精确的循环中, 将它进行更精确的模拟的模拟的实验中可以显示, 。 。在不断的实验中, 。在不断的实验中, 模拟的实验中, 将它能显示,可以显示, 进行更深的实验性地显示的实验性地分析。

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员