We consider the numerical evaluation of a class of double integrals with respect to a pair of self-similar measures over a self-similar fractal set, with a weakly singular integrand of logarithmic or algebraic type. In a recent paper [Gibbs, Hewett and Moiola, Numer. Alg., 2023] it was shown that when the fractal set is ``disjoint'' in a certain sense (an example being the Cantor set), the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular integrals, which can be readily approximated numerically. In this paper we present a methodology for extending these results to cases where the fractal is non-disjoint. Our approach applies to many well-known examples including the Sierpinski triangle, the Vicsek fractal, the Sierpinski carpet, and the Koch snowflake.
翻译:本论文考虑关于一对自相似度量的双重积分在自相似分形集上的数字计算,积分被认为是具有对数或代数类型的弱奇异性。在最近的一篇论文中[Gibbs,Hewett和Moiola,Numer. Alg.,2023]指出,当分形集在某种意义上是“不相交”的时候(一个例子是康托尔集),由于度量的自相似性,加上积分核的同次性质,可以利用正常积分来确切地表示奇异积分,这可以很容易地被数值逼近。本文介绍了一种将这些结果推广到分形集非不相交情况的方法。我们的方法适用于许多众所周知的例子,包括Sierpinski三角形、Vicsek分形、Sierpinski地毯和Koch雪花。