Reconstructing images using brain signals of imagined visuals may provide an augmented vision to the disabled, leading to the advancement of Brain-Computer Interface (BCI) technology. The recent progress in deep learning has boosted the study area of synthesizing images from brain signals using Generative Adversarial Networks (GAN). In this work, we have proposed a framework for synthesizing the images from the brain activity recorded by an electroencephalogram (EEG) using small-size EEG datasets. This brain activity is recorded from the subject's head scalp using EEG when they ask to visualize certain classes of Objects and English characters. We use a contrastive learning method in the proposed framework to extract features from EEG signals and synthesize the images from extracted features using conditional GAN. We modify the loss function to train the GAN, which enables it to synthesize 128x128 images using a small number of images. Further, we conduct ablation studies and experiments to show the effectiveness of our proposed framework over other state-of-the-art methods using the small EEG dataset.
翻译:重建图像使用想象中的视觉过程的脑信号可能为残疾人提供增强的视觉,推动了脑机接口 (BCI) 技术的发展。深度学习的最新进展推动了使用生成对抗网络 (GAN) 从脑信号中合成图像的研究领域。在这项工作中,我们提出了一种框架,利用小规模 EEG 数据集从脑活动中合成影像。我们记录来自被试的头皮的脑活动,以确定他们所想象的物体类别和英文字母。我们在所提出框架中使用对比学习方法从 EEG 信号中提取特征,并使用条件 GAN 从提取的特征中合成图像。我们修改了损失函数以训练 GAN,使其能够使用少量图像合成 128x128 的图像。此外,我们还进行了消融研究和实验,以展示我们提出的框架在小 EEG 数据集上相对于其他最先进的方法的有效性。