Ultrasound b-mode imaging is a qualitative approach and diagnostic quality strongly depends on operators' training and experience. Quantitative approaches can provide information about tissue properties; therefore, can be used for identifying various tissue types, e.g., speed-of-sound in the tissue can be used as a biomarker for tissue malignancy, especially in breast imaging. Recent studies showed the possibility of speed-of-sound reconstruction using deep neural networks that are fully trained on simulated data. However, because of the ever-present domain shift between simulated and measured data, the stability and performance of these models in real setups are still under debate. In prior works, for training data generation, tissue structures were modeled as simplified geometrical structures which does not reflect the complexity of the real tissues. In this study, we proposed a new simulation setup for training data generation based on Tomosynthesis images. We combined our approach with the simplified geometrical model and investigated the impacts of training data diversity on the stability and robustness of an existing network architecture. We studied the sensitivity of the trained network to different simulation parameters, e.g., echogenicity, number of scatterers, noise, and geometry. We showed that the network trained with the joint set of data is more stable on out-of-domain simulated data as well as measured phantom data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员