Fetal Magnetic Resonance Imaging (MRI) is used in prenatal diagnosis and to assess early brain development. Accurate segmentation of the different brain tissues is a vital step in several brain analysis tasks, such as cortical surface reconstruction and tissue thickness measurements. Fetal MRI scans, however, are prone to motion artifacts that can affect the correctness of both manual and automatic segmentation techniques. In this paper, we propose a novel network structure that can simultaneously generate conditional atlases and predict brain tissue segmentation, called CAS-Net. The conditional atlases provide anatomical priors that can constrain the segmentation connectivity, despite the heterogeneity of intensity values caused by motion or partial volume effects. The proposed method is trained and evaluated on 253 subjects from the developing Human Connectome Project (dHCP). The results demonstrate that the proposed method can generate conditional age-specific atlas with sharp boundary and shape variance. It also segment multi-category brain tissues for fetal MRI with a high overall Dice similarity coefficient (DSC) of $85.2\%$ for the selected 9 tissue labels.
翻译:胎儿磁共振成像(MRI)用于产前诊断和评估早期大脑发育,对不同脑组织进行精确的分解是几项大脑分析任务的关键步骤,例如皮层表面重建和组织厚度测量,但是,胎儿磁共振扫描容易发生运动,会影响手动和自动分解技术的正确性。在本文件中,我们建议建立一个新型网络结构,可以同时产生附带条件的地图册并预测脑组织分解,称为CAS-Net。 有条件的地图册提供了可以限制分解连接的解剖前科,尽管运动或部分体积效应造成强度值的异质性。拟议方法就开发人类连接项目(dHCP)的253个主题进行了培训和评价。结果显示,拟议的方法可以产生具有尖锐边界和形状差异的有条件的年龄特定图。此外,对于选定的9个组织标签,它也为具有高整体DI系数(DSC)85.2美元(DSC)的胎儿多类脑组织组织组织组织组织组织。