The quality of patient care associated with diagnostic radiology is proportionate to a physician workload. Segmentation is a fundamental limiting precursor to diagnostic and therapeutic procedures. Advances in Machine Learning (ML) aim to increase diagnostic efficiency to replace single application with generalized algorithms. In Unsupervised Anomaly Detection (UAD), Convolutional Neural Network (CNN) based Autoencoders (AEs) and Variational Autoencoders (VAEs) are considered as a de facto approach for reconstruction based anomaly segmentation. Looking for anomalous regions in medical images is one of the main applications that use anomaly segmentation. The restricted receptive field in CNNs limit the CNN to model the global context and hence if the anomalous regions cover parts of the image, the CNN-based AEs are not capable to bring semantic understanding of the image. On the other hand, Vision Transformers (ViTs) have emerged as a competitive alternative to CNNs. It relies on the self-attention mechanism that is capable to relate image patches to each other. To reconstruct a coherent and more realistic image, in this work, we investigate Transformer capabilities in building AEs for reconstruction based UAD task. We focus on anomaly segmentation for Brain Magnetic Resonance Imaging (MRI) and present five Transformer-based models while enabling segmentation performance comparable or superior to State-of-The-Art (SOTA) models. The source code is available on Github https://github.com/ahmedgh970/Transformers_Unsupervised_Anomaly_Segmentation.git
翻译:与诊断放射有关的病人护理质量与医生的工作量成比例。分解是诊断和治疗程序的一个基本限制前提。机器学习的进步旨在提高诊断效率,以通用算法取代单一应用。在无监督的异常检测(UAD)、基于AEs的革命神经网络(CNN)Autoencoders(AEs)和Variational Autencoders(VAE)被认为是基于异常分解的重建的一种事实上的方法。在医疗图像中寻找反常区域是使用异常分解的主要应用之一。CNNS的有限接收字段将CNNS限制为全球背景的模型,因此如果非异常区域覆盖图像的某些部分,基于CNNAD的AE不能带来对图像的语义理解。另一方面,愿景变异位器(VETs)是作为CNNIS的竞争性替代方法出现的。它依赖于能够将图像源的正态源代码连接到对方的自我保存机制。在本次工作中,SNMERS-S-SUS-S-Serviewal Syal Creal Calimal A-CA-SyA-Supstrual Systragement A-Supal Study)中,我们调查当前变变变换变换变换的A-IA-A-A-R-R-A-R-R-A-A-A-S-S-S-S-S-S-S-A-S-S-S-S-S-A-A-A-A-A-A-A-A-A-A-A-I-I-I-I-I-I-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-