Optical coherence tomography (OCT) is a non-invasive 3D modality widely used in ophthalmology for imaging the retina. Achieving automated, anatomically coherent retinal layer segmentation on OCT is important for the detection and monitoring of different retinal diseases, like Age-related Macular Disease (AMD) or Diabetic Retinopathy. However, the majority of state-of-the-art layer segmentation methods are based on purely supervised deep-learning, requiring a large amount of pixel-level annotated data that is expensive and hard to obtain. With this in mind, we introduce a semi-supervised paradigm into the retinal layer segmentation task that makes use of the information present in large-scale unlabeled datasets as well as anatomical priors. In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation, allowing to use both 1D surface and 2D layer representations in a coupled fashion to train the model. In particular, these 2D segmentations are used as anatomical factors that, together with learned style factors, compose disentangled representations used for reconstructing the input image. In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available. We demonstrate on the real-world dataset of scans with intermediate and wet-AMD that our method outperforms state-of-the-art when using our full training set, but more importantly largely exceeds state-of-the-art when it is trained with a fraction of the labeled data.
翻译:(OCT) 光学感光成像仪(OCT) 是一个非侵入的三维中间模式, 广泛用于视网膜成像。 在 OCT 上实现自动的、 解剖上一致的视离子层分解功能对于检测和监测不同视网膜疾病非常重要, 比如与年龄有关的肌肉疾病(AMD) 或糖尿病视网膜病。 然而, 大部分状态的层分解方法都是基于纯受监督的深层学习, 需要大量由像素水平附加附加说明的像素水平数据, 这些数据既昂贵又难以获得。 牢记这一点, 我们将半超常超常范范模式引入视离子层分解任务, 使得使用大规模未贴标签的数据集(AMAD) 以及解剖前的基因疾病。 特别是, 使用新颖的完全不同的方法将表面位置折叠合成像分解成一个像素结构分解, 可以同时使用1D表面和2D层表示全局性的数据。 特别是,, 将亚色的分解的分解方法用于了我们组织内部的分解方法,, 将我们用前的分解的分解成型的分解成的分解成型的分解成的分解成的分解成型的分解成型的分解成型的分解成型的分解成型数据, 当我们学习的分解成型的分解成型的解成的解成型数据, 的分解成的分解成型的分解成型的分解成型的分解成型的分解成型的分解成型数据,, 的分解成型的分解成型的分解成型的分解成的分解成型,, 的分解成型, 当我们的分解成型的分解成型, 的分解和我们的分解成的分解成型的分解, 当我们的分解制成型的分解成形的分解制的分解制成的分解制成的分解的分的分制的分解, 的分解的分解的分解的分解的分解的分解的分解的分解的分解, 的分解, 的分解