In recent years, several experimental groups have claimed demonstrations of ``quantum supremacy'' or computational quantum advantage. A notable first claim by Google Quantum AI revolves around a metric called the Linear Cross Entropy Benchmarking (Linear XEB), which has been used in multiple quantum supremacy experiments since. The complexity-theoretic hardness of spoofing Linear XEB has nevertheless been doubtful due to its dependence on the Cross-Entropy Quantum Threshold (XQUATH) conjecture put forth by Aaronson and Gunn, which has been disproven for sublinear depth circuits. In efforts on demonstrating quantum supremacy by quantum Hamiltonian simulation, a similar benchmarking metric called the System Linear Cross Entropy Score (sXES) holds firm in light of the aforementioned negative result due to its fundamental distinction with Linear XEB. Moreover, the hardness of spoofing sXES complexity-theoretically rests on the System Linear Cross-Entropy Quantum Threshold Assumption (sXQUATH), the formal relationship of which to XQUATH is unclear. Despite the promises that sXES offers for future demonstration of quantum supremacy, in this work we show that it is an unsound benchmarking metric. Particularly, we prove that sXQUATH does not hold for sublinear depth circuits and present a classical algorithm that spoofs sXES for experiments corrupted with noise larger than certain threshold.
翻译:暂无翻译