This paper presents a simple yet effective two-stage framework for semi-supervised medical image segmentation. Our key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images to enhance the segmentation performance. In the first stage, we present an aleatoric uncertainty-aware method, namely AUA, to improve the segmentation performance for generating high-quality pseudo labels. Considering the inherent ambiguity of medical images, AUA adaptively regularizes the consistency on images with low ambiguity. To enhance the representation learning, we propose a stage-adaptive contrastive learning method, including a boundary-aware contrastive loss to regularize the labeled images in the first stage and a prototype-aware contrastive loss to optimize both labeled and pseudo labeled images in the second stage. The boundary-aware contrastive loss only optimizes pixels around the segmentation boundaries to reduce the computational cost. The prototype-aware contrastive loss fully leverages both labeled images and pseudo labeled images by building a centroid for each class to reduce computational cost for pair-wise comparison. Our method achieves the best results on two public medical image segmentation benchmarks. Notably, our method outperforms the prior state-of-the-art by 5.7% on Dice for colon tumor segmentation relying on just 5% labeled images.


翻译:本文为半监督医疗图像分割提供了一个简单而有效的两阶段框架。 我们的关键洞察力是探索带有标签和无标签(伪标签)图像的特征代表学习方法, 以强化分解性性能。 在第一阶段, 我们展示了一种感知性不确定和假标签识别方法, 即 AUAA, 以改善产生高质量假标签的分解性能。 考虑到医疗图像固有的模糊性, AUA 适应性地规范了图像的一致性, 低模糊性。 为了强化代谢性学习, 我们建议了一种分阶段适应性对比性学习方法, 包括一种有边界意识的对比性损失, 以规范第一阶段的标签图像和无标签( 伪标签标签) 和无标签的图像 。 在第二阶段, 我们的分层图案和假标签的对比性图案的对比性损失只能优化分层边界周围的分解性能, 以降低计算成本。 原型的对比性损失完全利用了标签图像和假标签性图像。 为了提高每类的比喻性图像, 为每类制作两个类类类的折中降低计算成本成本成本, 。 我们的方法通过前的分层图法在5次的正位图中, 将获得最佳结果。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年1月24日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员