We propose \textit{average Localisation-Recall-Precision} (aLRP), a unified, bounded, balanced and ranking-based loss function for both classification and localisation tasks in object detection. aLRP extends the Localisation-Recall-Precision (LRP) performance metric (Oksuz et al., 2018) inspired from how Average Precision (AP) Loss extends precision to a ranking-based loss function for classification (Chen et al., 2020). aLRP has the following distinct advantages: (i) aLRP is the first ranking-based loss function for both classification and localisation tasks. (ii) Thanks to using ranking for both tasks, aLRP naturally enforces high-quality localisation for high-precision classification. (iii) aLRP provides provable balance between positives and negatives. (iv) Compared to on average $\sim$6 hyperparameters in the loss functions of state-of-the-art detectors, aLRP Loss has only one hyperparameter, which we did not tune in practice. On the COCO dataset, aLRP Loss improves its ranking-based predecessor, AP Loss, up to around $5$ AP points, achieves $48.9$ AP without test time augmentation and outperforms all one-stage detectors. Code available at: https://github.com/kemaloksuz/aLRPLoss .
翻译:我们提出\textit{ 平均本地化-召回- 精密} (aLRP),这是一个统一的、约束的、均衡的和基于排名的分类和本地化任务在目标检测中都适用的损失功能。 ALRP将本地化-召回- 精密(LRP) 性能衡量标准(Oksuz等人, 2018年) 扩展为平均精度(AP) 损失将精确度扩展为分类的基于排序的损失功能(Chen等人,2020年)。 ARRP具有以下不同的好处:(一) ALRP是分类和本地化任务中第一个基于等级的损失函数。 (二) 由于对两项任务都采用排名,LRP自然地将高质量本地化- 精准(LRP) 性衡量标准(Oksuz等人, 201818年),根据平均精度(Chen等人,2020年) 损失与基于州- 本地级/ 探测器损失功能的损失函数相比,LRRP损失只有一个超标,我们在实践上没有调整。