This work is motivated by a question whether it is possible to calculate a chaotic sequence efficiently, e.g., is it possible to get the $n$-th bit of a bit sequence generated by a chaotic map, such as $\beta$-expansion, tent map and logistic map in $\mathrm{o}(n)$ time/space? This paper gives an affirmative answer to the question about the space complexity of a tent map. We show that the decision problem of whether a given bit sequence is a valid tent code is solved in $\mathrm{O}(\log^{2} n)$ space in a sense of the smoothed complexity.
翻译:暂无翻译