This work presents a novel dense RGB-D SLAM approach for dynamic planar environments that enables simultaneous multi-object tracking, camera localisation and background reconstruction. Previous dynamic SLAM methods either rely on semantic segmentation to directly detect dynamic objects; or assume that dynamic objects occupy a smaller proportion of the camera view than the static background and can, therefore, be removed as outliers. Our approach, however, enables dense SLAM when the camera view is largely occluded by multiple dynamic objects with the aid of camera motion prior. The dynamic planar objects are separated by their different rigid motions and tracked independently. The remaining dynamic non-planar areas are removed as outliers and not mapped into the background. The evaluation demonstrates that our approach outperforms the state-of-the-art methods in terms of localisation, mapping, dynamic segmentation and object tracking. We also demonstrate its robustness to large drift in the camera motion prior.
翻译:这项工作为动态平面环境提出了一种新的密集的 RGB-D SLAM 方法, 使得能够同时进行多物体跟踪、 相机定位和背景重建。 以往的动态SLAM 方法要么依靠语义分割法直接探测动态物体; 要么假设动态物体占相机视图的比例小于静态背景,因此可以被移除为外部物体。 然而, 我们的方法使得摄像器视图在摄像机前运动的辅助下被多个动态物体广泛遮蔽时, 能够进行密集的SLAM 。 动态平面物体通过不同的僵硬动作进行分离和独立跟踪。 剩下的动态非平面区域作为外部区域被移除, 而不是映射到背景中。 评估表明, 我们的方法在定位、 绘图、 动态分割和对象跟踪方面超过了最先进的方法。 我们还表明, 在相机运动前的大规模漂移中, 具有很强性。