In biomedical science, analyzing treatment effect heterogeneity plays an essential role in assisting personalized medicine. The main goals of analyzing treatment effect heterogeneity include estimating treatment effects in clinically relevant subgroups and predicting whether a patient subpopulation might benefit from a particular treatment. Conventional approaches often evaluate the subgroup treatment effects via parametric modeling and can thus be susceptible to model mis-specifications. In this manuscript, we take a model-free semiparametric perspective and aim to efficiently evaluate the heterogeneous treatment effects of multiple subgroups simultaneously under the one-step targeted maximum-likelihood estimation (TMLE) framework. When the number of subgroups is large, we further expand this path of research by looking at a variation of the one-step TMLE that is robust to the presence of small estimated propensity scores in finite samples. From our simulations, our method demonstrates substantial finite sample improvements compared to conventional methods. In a case study, our method unveils the potential treatment effect heterogeneity of rs12916-T allele (a proxy for statin usage) in decreasing Alzheimer's disease risk.
翻译:在生物医学科学中,分析治疗效果异质性在协助个性化医学方面发挥着必不可少的作用。分析治疗效果异质性的主要目标包括估计临床相关子群的治疗效果和预测病人亚群人口是否可能从特定治疗中受益。常规方法经常通过参数模型评估分组治疗效果,因此可以模拟错误的特性。在这个手稿中,我们从一个无模型的半对数角度出发,旨在有效地评价在一步骤目标最大类比估计(TMLE)框架下同时对多个子群的不同治疗效果。当子群数量庞大时,我们进一步扩大这一研究途径,我们查看一步骤TMLE的变异性,这种变异性能与有限估计的定性分数在一定样本中的存在相当。从我们的模拟中,我们的方法显示与常规方法相比,样本有相当大的有限性改进。在一项案例研究中,我们的方法揭示了在降低老年痴呆病风险方面,R12916-Tele(统计使用的一种替代物)潜在的治疗效果。