Why do explainable AI (XAI) explanations in radiology, despite their promise of transparency, still fail to gain human trust? Current XAI approaches provide justification for predictions, however, these do not meet practitioners' needs. These XAI explanations lack intuitive coverage of the evidentiary basis for a given classification, posing a significant barrier to adoption. We posit that XAI explanations that mirror human processes of reasoning and justification with evidence may be more useful and trustworthy than traditional visual explanations like heat maps. Using a radiology case study, we demonstrate how radiology practitioners get other practitioners to see a diagnostic conclusion's validity. Machine-learned classifications lack this evidentiary grounding and consequently fail to elicit trust and adoption by potential users. Insights from this study may generalize to guiding principles for human-centered explanation design based on human reasoning and justification of evidence.


翻译:为什么即使在透明度方面有所承诺的可解释人工智能(XAI)在放射学中的解释仍然无法获得人类的信任?当前的XAI方法提供了预测的证明,然而这些预测并不满足从业者的需求。这些可解释人工智能解释缺乏直观的覆盖给定分类的证据基础,这是采纳的一个重要障碍。我们认为,反映人类推理和证据证明过程的可解释人工智能解释可能比传统的可视化解释如热力图更有用和值得信赖。通过放射学案例研究,我们展示了放射学从业者如何让其他从业者看到诊断结论的有效性。机器学习分类缺乏这种证据的基础,因此无法引起潜在用户的信任和采用。这项研究的见解可推广到基于人类证据推理和证明的以人为中心的解释设计指导原则。

0
下载
关闭预览

相关内容

一个可以解释的AI(Explainable AI, 简称XAI)或透明的AI(Transparent AI),其行为可以被人类容易理解。它与机器学习中“ 黑匣子 ” 的概念形成鲜明对比,这意味着复杂算法运作的“可解释性”,即使他们的设计者也无法解释人工智能为什么会做出具体决定。 XAI可用于实现社会解释的权利。有些人声称透明度很少是免费提供的,并且在人工智能的“智能”和透明度之间经常存在权衡; 随着AI系统内部复杂性的增加,这些权衡预计会变得更大。解释AI决策的技术挑战有时被称为可解释性问题。另一个考虑因素是信息(信息过载),因此,完全透明可能并不总是可行或甚至不需要。提供的信息量应根据利益相关者与智能系统的交互情况而有所不同。 https://www.darpa.mil/program/explainable-artificial-intelligence
专知会员服务
61+阅读 · 2021年6月22日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
35+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Towards Reasoning in Large Language Models: A Survey
Arxiv
0+阅读 · 2023年5月26日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
35+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员