Supervised Gaussian denoisers exhibit limited generalization when confronted with out-of-distribution noise, due to the diverse distributional characteristics of different noise types. To bridge this gap, we propose a histogram matching approach that transforms arbitrary noise towards a target Gaussian distribution with known intensity. Moreover, a mutually reinforcing cycle is established between noise transformation and subsequent denoising. This cycle progressively refines the noise to be converted, making it approximate the real noise, thereby enhancing the noise transformation effect and further improving the denoising performance. We tackle specific noise complexities: local histogram matching handles signal-dependent noise, intrapatch permutation processes channel-related noise, and frequency-domain histogram matching coupled with pixel-shuffle down-sampling breaks spatial correlation. By applying these transformations, a single Gaussian denoiser gains remarkable capability to handle various out-of-distribution noises, including synthetic noises such as Poisson, salt-and-pepper and repeating pattern noises, as well as complex real-world noises. Extensive experiments demonstrate the superior generalization and effectiveness of our method.
翻译:暂无翻译