In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. In our previous work, we have introduced contrast-independent partially explicit time discretizations and applied to parabolic equations. The main idea of contrast-independent partially explicit time discretization is to split the spatial space into two components: contrast dependent (fast) and contrast independent (slow) spaces defined via multiscale space decomposition. Using this decomposition, our goal is further appropriately to introduce time splitting such that the resulting scheme is stable and can guarantee contrast-independent discretization under some suitable (reasonable) conditions. In this paper, we propose contrast-independent partially explicitly scheme for wave equations. The splitting requires a careful design. We prove that the proposed splitting is unconditionally stable under some suitable conditions formulated for the second space (slow). This condition requires some type of non-contrast dependent space and is easier to satisfy in the "slow" space. We present numerical results and show that the proposed methods provide results similar to implicit methods with the time step that is independent of the contrast.


翻译:在这项工作中,我们设计并调查不同高 convrat- contract 介质中波形方程式与对比独立的部分明显的时间分解;我们考虑多种规模的问题,即空间异差处于亚电离层水平,而这些问题没有解决;我们在先前的工作中,引入了与对比独立的部分明确的时间分解,并应用于抛物线方程式。相对独立的部分时间分解的主要理念是将空间空间空间分成两个组成部分:不同依赖空间(快)和通过多尺度空间分解定义的对比独立(低位)空间。利用这种分解,我们的目标是进一步引入时间分割,使由此产生的空间方案稳定,并能够在一些合适的(合理)条件下保证与对比独立的离散。在本文中,我们提出了对波方方方程式有部分明确区分的办法。分解需要仔细设计。我们证明,在为第二个空间(低位)制定的某些适当条件下,拟议的分解空间是无条件稳定的。这一条件要求有某种非连续的空间类型,在“低位”空间中更容易满足“低位”空间。我们目前采用的独立计算结果,并显示以类似的方式。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员