In this paper, we propose a new global analysis framework for a class of low-rank matrix recovery problems on the Riemannian manifold. We analyze the global behavior for the Riemannian optimization with random initialization. We use the Riemannian gradient descent algorithm to minimize a least squares loss function, and study the asymptotic behavior as well as the exact convergence rate. We reveal a previously unknown geometric property of the low-rank matrix manifold, which is the existence of spurious critical points for the simple least squares function on the manifold. We show that under some assumptions, the Riemannian gradient descent starting from a random initialization with high probability avoids these spurious critical points and only converges to the ground truth in nearly linear convergence rate, i.e. $\mathcal{O}(\text{log}(\frac{1}{\epsilon})+ \text{log}(n))$ iterations to reach an $\epsilon$-accurate solution. We use two applications as examples for our global analysis. The first one is a rank-1 matrix recovery problem. The second one is a generalization of the Gaussian phase retrieval problem. It only satisfies the weak isometry property, but has behavior similar to that of the first one except for an extra saddle set. Our convergence guarantee is nearly optimal and almost dimension-free, which fully explains the numerical observations. The global analysis can be potentially extended to other data problems with random measurement structures and empirical least squares loss functions.
翻译:在本文中, 我们提出一个新的全球分析框架, 用于在里曼尼方块上的一组低位矩阵回收问题。 我们用随机初始化来分析里曼尼优化的全球行为。 我们使用里曼尼梯度下降算法来尽量减少一个最小平方损失函数, 并研究低位矩阵数的无平方损失率和精确趋同率。 我们揭示了低位矩阵数的先前未知几何属性, 即存在简单的最小方块的虚假临界点。 我们在某些假设下, 从随机初始化开始的里曼梯度下降, 极有可能避免这些虚假临界点, 并且仅以近线性趋同率( $\ macal{O} (\ text{log} (\ frac{ 1unslon} +\ text{ { {log} (n) ) 。 我们使用两种应用程序作为全球分析的示例。 首先是一级至一级梯度的梯度递归性分析, 最接近于平方平方平方平方平方块的递增性分析。 除了一个数据外, 一种平面分析, 一种平方块的解算是完全的平面性变现, 唯一的解问题。