This paper explores a novel application of textual semantic similarity to user-preference representation for rating prediction. The approach represents a user's preferences as a graph of textual snippets from review text, where the edges are defined by semantic similarity. This textual, memory-based approach to rating prediction enables review-based explanations for recommendations. The method is evaluated quantitatively, highlighting that leveraging text in this way outperforms both strong memory-based and model-based collaborative filtering baselines.
翻译:本文探索了文字语义与用户偏好表示法在评级预测中的新应用。 这种方法代表了用户的偏好,作为审查文本的文字片断图,其中边缘由语义相似性界定。 这种基于记忆的文字性评级预测方法使得基于审查的建议解释得以进行定量评估。 该方法通过定量评估,强调以这种方式利用文字的方式,超过了强有力的内存和基于模式的协作过滤基线。