To date, most directed acyclic graphs (DAGs) structure learning approaches require data to be stored in a central server. However, due to the consideration of privacy protection, data owners gradually refuse to share their personalized raw data to avoid private information leakage, making this task more troublesome by cutting off the first step. Thus, a puzzle arises: \textit{how do we discover the underlying DAG structure from decentralized data?} In this paper, focusing on the additive noise models (ANMs) assumption of data generation, we take the first step in developing a gradient-based learning framework named FedDAG, which can learn the DAG structure without directly touching the local data and also can naturally handle the data heterogeneity. Our method benefits from a two-level structure of each local model. The first level structure learns the edges and directions of the graph and communicates with the server to get the model information from other clients during the learning procedure, while the second level structure approximates the mechanisms among variables and personally updates on its own data to accommodate the data heterogeneity. Moreover, FedDAG formulates the overall learning task as a continuous optimization problem by taking advantage of an equality acyclicity constraint, which can be solved by gradient descent methods to boost the searching efficiency. Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.


翻译:至今为止,大多数定向的环形图(DAGs)结构学习方法要求将数据储存在中央服务器中。然而,由于对隐私保护的考虑,数据所有人逐渐拒绝分享其个人化原始数据以避免私人信息泄漏,从而使这项任务更加麻烦。因此,产生了一个难题:\ textit{我们如何从分散的数据中发现基本的DAG结构?}在侧重于数据生成的添加噪声模型假设的本文件中,我们迈出了第一步,开发了一个以梯度为基础的学习框架,名为FDDDAAG,它可以在不直接接触当地数据的情况下学习DAG结构,也可以自然地处理数据繁杂性。我们的方法得益于每个地方模型的两层结构。第一层结构了解了图形的边缘和方向,并与服务器沟通,以便在学习过程中从其他客户那里获得模型信息,而第二级结构则接近了变量之间的机制,并亲自更新了自己的数据,以适应数据的多样性。此外,FDDAGAG制定了总体学习任务,即通过不断的周期性化实验方法,通过不断的周期性效率来提升数据效率,从而通过持续地压压压平化的方法,从而提升数据效率的优势,从而解决了不断的升级化方法的优势。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员