A generalized linear model is one of the most well-known model families in statistics. Of course, we should specify the correct model structure to estimate the unbiased result and make a valid inference, however, we would like to consider an another rational approach in this paper to make a valid inference. The proposed method is 1) preparing some candidate models, and 2) construct an estimating equation including the candidate models at once (do not have to select just one) to estimate an interested parameter. If the correct model was included in the candidate models, the parameter estimator would have the consistency. By using the idea, we will consider a robust estimating method to estimate a "valid" parameter estimator without any model/variable selection methods. As an application example, an estimation of a propensity score and a generalized propensity score will be considered.
翻译:通用线性模型是统计中最著名的模型型系之一。 当然,我们应该指定正确的模型结构来估计不公正的结果,并做出一个有效的推论。 但是,我们想考虑本文件中的另一个合理方法来作出一个有效的推论。 提议的方法是:(1) 准备一些候选模型,(2) 构建一个估算方程,包括同时(不必只选择一个)估算相关参数的候选模型。如果将正确的模型纳入候选模型,参数估计器将具有一致性。通过使用这一想法,我们将考虑一个稳健的估计方法来估算一个“有效”参数估计器,而不使用任何模式/可变选方法。作为一个应用实例,将考虑估算一个适应性分数和普遍偏差分。