The presence of outliers (anomalous values) in synthetic aperture radar (SAR) data and the misspecification in statistical image models may result in inaccurate inferences. To avoid such issues, the Rayleigh regression model based on a robust estimation process is proposed as a more realistic approach to model this type of data. This paper aims at obtaining Rayleigh regression model parameter estimators robust to the presence of outliers. The proposed approach considered the weighted maximum likelihood method and was submitted to numerical experiments using simulated and measured SAR images. Monte Carlo simulations were employed for the numerical assessment of the proposed robust estimator performance in finite signal lengths, their sensitivity to outliers, and the breakdown point. For instance, the non-robust estimators show a relative bias value $65$-fold larger than the results provided by the robust approach in corrupted signals. In terms of sensitivity analysis and break down point, the robust scheme resulted in a reduction of about $96\%$ and $10\%$, respectively, in the mean absolute value of both measures, in compassion to the non-robust estimators. Moreover, two SAR data sets were used to compare the ground type and anomaly detection results of the proposed robust scheme with competing methods in the literature.
翻译:合成孔径雷达(SAR)数据中的外部值和统计图像模型中的误差可能导致不准确的推论。为了避免出现这些问题,建议采用基于稳健估算过程的雷利回归模型,作为模拟这类数据的一种更现实的方法。本文件旨在获得与离子存在相容的Raylei回归模型参数估计器;拟议方法考虑了加权最大可能性方法,并采用模拟和测量的SAR图像进行了数字实验。蒙特卡洛模拟用于对拟议的有限信号长度中稳健的估测器性能、其对外部值的敏感度和分解点进行数字评估。例如,以稳健估算器为基础的雷利回归模型模型模型模型作为模拟这类数据模型的比较偏差值为65美元,比腐败信号中稳健方法提供的结果大一倍。在敏感性分析和分解点方面,稳健计划的结果是分别减少96 美元 和 10 美元 。 Monte Carlo模拟用于对拟议在有限信号长度中稳健的估测算器性性性能、其对外部值敏感度的敏感度和分差点进行数字评估。此外,使用两个非机器人测算器与相型的合成的合成合成合成合成合成合成合成合成合成合成合成合成合成合成的合成的合成合成合成合成合成合成合成合成合成的合成的合成的合成的合成的合成的合成的合成的合成的合成的合成的合成数据用于比较。