Nonconvex and nonsmooth optimization problems are important and challenging for statistics and machine learning. In this paper, we propose Projected Proximal Gradient Descent (PPGD) which solves a class of nonconvex and nonsmooth optimization problems, where the nonconvexity and nonsmoothness come from a nonsmooth regularization term which is nonconvex but piecewise convex. In contrast with existing convergence analysis of accelerated PGD methods for nonconvex and nonsmooth problems based on the Kurdyka-\L{}ojasiewicz (K\L{}) property, we provide a new theoretical analysis showing local fast convergence of PPGD. It is proved that PPGD achieves a fast convergence rate of $\cO(1/k^2)$ when the iteration number $k \ge k_0$ for a finite $k_0$ on a class of nonconvex and nonsmooth problems under mild assumptions, which is locally Nesterov's optimal convergence rate of first-order methods on smooth and convex objective function with Lipschitz continuous gradient. Experimental results demonstrate the effectiveness of PPGD.
翻译:非凸非光滑优化问题的投影近端梯度下降:无需Kurdyka-Lojasiewicz(KL)性质的快速收敛
翻译摘要:
非凸和非光滑优化问题对于统计学和机器学习非常重要且具有挑战性。本文提出了投影近端梯度下降(PPGD)算法解决了一类非凸和非光滑的优化问题,其中非凸性和非光滑性来自于一个非凸的但分段凸的非光滑正则化项。与现有的基于Kurdyka-Lojasiewicz(K\L{})性质的非凸和非光滑问题加速PGD方法的收敛分析相比,我们提供了一种新的理论分析,展示了PPGD的局部快速收敛。在温和的假设下,证明了当迭代次数$k \geq k_0$时(具有有限的$k_0$),PPGD在一类非凸和非光滑问题上实现了$\cO(1/k^2)$的快速收敛率,这是关于平滑和凸对象函数Lipschitz连续梯度的第一阶方法的Nesterov局部最优的收敛速率。实验结果证明了PPGD的有效性。