Segmentation of images is a popular topic in medical AI. This is mainly due to the difficulty to obtain a significant number of pixel-level annotated data to train a neural network. To address this issue, we proposed a semi-supervised segmentation network based on contrastive learning. In contrast to the previous state-of-the-art, we introduce Min-Max Similarity (MMS), a contrastive learning form of dual-view training by employing classifiers and projectors to build all-negative, and positive and negative feature pairs respectively to formulate the learning problem as solving min-max similarity problem. The all-negative pairs are used to supervise the networks learning from different views and make sure to capture general features, and the consistency of unlabeled predictions is measured by pixel-wise contrastive loss between positive and negative pairs. To quantitative and qualitative evaluate our proposed method, we test it on two public endoscopy surgical tool segmentation datasets and one cochlear implant surgery dataset which we manually annotate the cochlear implant in surgical videos. The segmentation performance (dice coefficients) indicates that our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently. And our semi-supervised segmentation algorithm can successfully recognize unknown surgical tools and provide good predictions. Also, our MMS could achieve about 40 frames per second (fps) and suitable to deal with the real-time video segmentation.
翻译:图像的分解是医学AI 中流行的主题。 这主要是因为很难获得大量像素级附加说明的数据来训练神经网络。 为了解决这个问题, 我们提议了一个半监督的分解网络, 其基础是对比性学习。 与以往的艺术水平相比, 我们引入了Min- Max相似性( MMS), 一种对比式的双视培训学习形式, 即使用分类器和投影器来建立全负的外科工具分解数据集, 以及正和负的配对, 以分别将学习问题描述成解决微模相似问题。 所有的负级配对用来监督网络的交易, 从不同的观点中学习, 并确保捕捉一般特征。 无标签的预测的一致性是通过正对与负的配对之间的分解性损失来衡量的。 为了定量和定性评估我们的拟议方法, 我们用两种公开内镜外科外科外科外科工具的第二次分解和40级外科外科手术数据集来测试它。 我们的分解性配对手术视频的分解性( 分解性分析法) 和连续的分解性分析法( ) 能够提供我们正确的分解和正变的分解方法, 和精确的分解性分析法( ) 能够实现我们的分解性分析法 和完全的分解法。