The prior distribution on parameters of a sampling distribution is the usual starting point for Bayesian uncertainty quantification. In this paper, we present a different perspective which focuses on missing observations as the source of statistical uncertainty, with the parameter of interest being known precisely given the entire population. We argue that the foundation of Bayesian inference is to assign a distribution on missing observations conditional on what has been observed. In the conditionally i.i.d. setting with an observed sample of size $n$, the Bayesian would thus assign a predictive distribution on the missing $Y_{n+1:\infty}$ conditional on $Y_{1:n}$, which then induces a distribution on the parameter. Demonstrating an application of martingales, Doob shows that choosing the Bayesian predictive distribution returns the conventional posterior as the distribution of the parameter. Taking this as our cue, we relax the predictive machine, avoiding the need for the predictive to be derived solely from the usual prior to posterior to predictive density formula. We introduce the \textit{martingale posterior distribution}, which returns Bayesian uncertainty directly on any statistic of interest without the need for the likelihood and prior, and this distribution can be sampled through a computational scheme we name \textit{predictive resampling}. To that end, we introduce new predictive methodologies for multivariate density estimation, regression and classification that build upon recent work on bivariate copulas.


翻译:抽样分布参数的先前分布是巴耶斯州不确定性量化的通常起点。 在本文中, 我们呈现了一个不同的视角, 侧重于缺失的观察作为统计不确定性的源头, 而关注的参数被精确地告知整个人口。 我们争论说, 巴耶斯州推论的基础是根据所观察到的参数对缺失的观测进行分配。 在有条件的 i. d. 设置一个观察到的大小为$的样本时, 巴耶斯州将因此对缺失的 $Y+1:\infty} 美元进行预测性分布, 以 $Y+1: n} 为条件, 以缺失的观察作为统计不确定性的来源, 从而引发参数的分布。 演示马丁基亚州参数的应用, Doob 表明, 选择巴耶斯州预测分布将传统后缀作为参数的分布条件。 作为我们的提示, 我们放松了预测机器, 避免仅需要从通常的 icostorate bior adbrial 公式中得出预测性 。 我们引入了 liteit{marting adticle adtial restial restial restial labilding rotition ladeal lade roview

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月25日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月23日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2022年1月25日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月23日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员