There is a need for new models for characterizing dependence in multivariate data. The multivariate Gaussian distribution is routinely used, but cannot characterize nonlinear relationships in the data. Most non-linear extensions tend to be highly complex; for example, involving estimation of a non-linear regression model in latent variables. In this article, we propose a relatively simple class of Ellipsoid-Gaussian multivariate distributions, which are derived by using a Gaussian linear factor model involving latent variables having a von Mises-Fisher distribution on a unit hyper-sphere. We show that the Ellipsoid-Gaussian distribution can flexibly model curved relationships among variables with lower-dimensional structures. Taking a Bayesian approach, we propose a hybrid of gradient-based geodesic Monte Carlo and adaptive Metropolis for posterior sampling. We derive basic properties and illustrate the utility of the Ellipsoid-Gaussian distribution on a variety of simulated and real data applications.
翻译:在多变量数据中,需要新模型来说明依赖性。 通常使用多变量高斯分布法,但无法在数据中描述非线性关系。 大多数非线性扩展法往往非常复杂; 例如,在潜伏变量中估计非线性回归模型。 在本篇文章中,我们建议使用一种相对简单的 Ellipsoid-Gausian多变量分布法,这些分布法是使用一个高斯线性系数模型来得出的,这些模型涉及在单位超视距上具有 von Mises- Fisher分布的潜性变量。 我们显示, Ellipsoid-Gausian分布法可以灵活地模拟与较低维度结构的变量之间的曲线关系。 我们采用一种巴伊西亚方法,我们提出一种基于梯度的蒙特卡洛和适应大都市的混合方法,用于子体取样。 我们从各种模拟和实际数据应用中获取基本特性并展示Ellips- Gausian分布法的效用。