A central task of a Disc Jockey (DJ) is to create a mixset of mu-sic with seamless transitions between adjacent tracks. In this paper, we explore a data-driven approach that uses a generative adversarial network to create the song transition by learning from real-world DJ mixes. In particular, the generator of the model uses two differentiable digital signal processing components, an equalizer (EQ) and a fader, to mix two tracks selected by a data generation pipeline. The generator has to set the parameters of the EQs and fader in such away that the resulting mix resembles real mixes created by humanDJ, as judged by the discriminator counterpart. Result of a listening test shows that the model can achieve competitive results compared with a number of baselines.
翻译:盘算器( DJ) 的核心任务是创建混合混杂的混凝土和相邻轨道之间的无缝过渡。 在本文中, 我们探索了一种数据驱动方法, 使用基因对抗网络从真实世界 DJ 混和中学习来创建歌曲转换。 特别是, 模型的生成器使用两种不同的数字信号处理组件, 一种对等器( EQ) 和一个淡化器, 混合由数据生成管道选择的两条轨道。 生成器必须设置 EQ 和 淡化器的参数, 使由此产生的混和类似由 人类DJ 创造的真混和, 由歧视对手来判断 。 听测试的结果显示, 模型可以取得与多个基线相比的竞争结果 。