We naturally generalize the on-line graph prediction problem to a version of stochastic contextual bandit problems where contexts are vertices in a graph and the structure of the graph provides information on the similarity of contexts. More specifically, we are given a graph $G=(V,E)$, whose vertex set $V$ represents contexts with {\em unknown} vertex label $y$. In our stochastic contextual bandit setting, vertices with the same label share the same reward distribution. The standard notion of instance difficulties in graph label prediction is the cutsize $f$ defined to be the number of edges whose end points having different labels. For line graphs and trees we present an algorithm with regret bound of $\tilde{O}(T^{2/3}K^{1/3}f^{1/3})$ where $K$ is the number of arms. Our algorithm relies on the optimal stochastic bandit algorithm by Zimmert and Seldin~[AISTAT'19, JMLR'21]. When the best arm outperforms the other arms, the regret improves to $\tilde{O}(\sqrt{KT\cdot f})$. The regret bound in the later case is comparable to other optimal contextual bandit results in more general cases, but our algorithm is easy to analyze, runs very efficiently, and does not require an i.i.d. assumption on the input context sequence. The algorithm also works with general graphs using a standard random spanning tree reduction.


翻译:基于图上下文的随机情境赌博机问题,自然地推广了在线图预测问题。上下文被定义为图中的顶点,图结构提供了有关上下文相似性的信息。具体来说,给定一个图$G=(V,E)$,其顶点集$V$表示具有未知顶点标签$y$的上下文。在我们的随机情境赌博机问题中,具有相同标签的顶点共享相同的奖励分布。图标签预测中的标准实例难度是切割大小$f$,其定义为具有不同标签的端点的边数。对于线图和树,我们提出了一种具有遗憾界$\tilde{O}(T^{2/3}K^{1/3}f^{1/3})$的算法,其中$K$是臂数。我们的算法依赖于Zimmert和Seldin~[AISTAT'19, JMLR'21]的最优随机赌博算法。当最佳臂表现优异时,遗憾将改善为$\tilde{O}(\sqrt{KT\cdot f})$。后一种情况下的遗憾界与其他更一般情况下的最优情境赌博结果相当,但我们的算法易于分析,运行非常高效,并且不要求输入上下文序列满足独立同分布的假设。该算法还利用标准随机生成树约减技巧适用于一般图。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员