We naturally generalize the on-line graph prediction problem to a version of stochastic contextual bandit problems where contexts are vertices in a graph and the structure of the graph provides information on the similarity of contexts. More specifically, we are given a graph $G=(V,E)$, whose vertex set $V$ represents contexts with {\em unknown} vertex label $y$. In our stochastic contextual bandit setting, vertices with the same label share the same reward distribution. The standard notion of instance difficulties in graph label prediction is the cutsize $f$ defined to be the number of edges whose end points having different labels. For line graphs and trees we present an algorithm with regret bound of $\tilde{O}(T^{2/3}K^{1/3}f^{1/3})$ where $K$ is the number of arms. Our algorithm relies on the optimal stochastic bandit algorithm by Zimmert and Seldin~[AISTAT'19, JMLR'21]. When the best arm outperforms the other arms, the regret improves to $\tilde{O}(\sqrt{KT\cdot f})$. The regret bound in the later case is comparable to other optimal contextual bandit results in more general cases, but our algorithm is easy to analyze, runs very efficiently, and does not require an i.i.d. assumption on the input context sequence. The algorithm also works with general graphs using a standard random spanning tree reduction.
翻译:基于图上下文的随机情境赌博机问题,自然地推广了在线图预测问题。上下文被定义为图中的顶点,图结构提供了有关上下文相似性的信息。具体来说,给定一个图$G=(V,E)$,其顶点集$V$表示具有未知顶点标签$y$的上下文。在我们的随机情境赌博机问题中,具有相同标签的顶点共享相同的奖励分布。图标签预测中的标准实例难度是切割大小$f$,其定义为具有不同标签的端点的边数。对于线图和树,我们提出了一种具有遗憾界$\tilde{O}(T^{2/3}K^{1/3}f^{1/3})$的算法,其中$K$是臂数。我们的算法依赖于Zimmert和Seldin~[AISTAT'19, JMLR'21]的最优随机赌博算法。当最佳臂表现优异时,遗憾将改善为$\tilde{O}(\sqrt{KT\cdot f})$。后一种情况下的遗憾界与其他更一般情况下的最优情境赌博结果相当,但我们的算法易于分析,运行非常高效,并且不要求输入上下文序列满足独立同分布的假设。该算法还利用标准随机生成树约减技巧适用于一般图。