\begin{abstract} \normalsize{\noindent A directed graph $G = (V,E)$ is singly connected if for any two vertices $v,u \in V$, the directed graph $G$ contains at most one simple path from $v$ to $u$. In this paper, we study different algorithms to find a feasible but necessarily optimal solution to the following problem. Given a directed acyclic graph $G=(V,E)$, find a subset $H \subseteq E$ of minimum size such that the subgraph $(V,E \setminus H)$ is singly connected. Moreover, we prove that this problem can be solved in polynomial time for a special kind of directed graphs.} \end{abstract}
翻译:\ begin{ abstract}\ 常规大小 = 方向图形 $G = (V, E) = (V, E) 美元 如果任何两个顶点 $v, u\ in V$, 方向图形 $G$ 最多包含一个简单的路径, 从 v$ 到 $u美元 。 在本文中, 我们研究不同的算法, 以找到一个可行但必然是最佳的解决以下问题的解决方案 。 如果有一个 方向的 周期性图形 $G = (V, E), 找到一个最小大小的子项 $H \ subseteq E$, 这样子图 $( V, E\ setminus H) 就可以单独连接 。 此外, 我们证明这个问题可以在特殊方向图形的多元时间解决 。}\ end{ amptrac}