We say that a tree $T$ is an $S$-Steiner tree if $S \subseteq V(T)$ and a hypergraph is an $S$-Steiner hypertree if it can be trimmed to an $S$-Steiner tree. We prove that it is NP-hard to decide, given a hypergraph $\mathcal{H}$ and some $S \subseteq V(\mathcal{H})$, whether there is a subhypergraph of $\mathcal{H}$ which is an $S$-Steiner hypertree. As corollaries, we give two negative results for two Steiner orientation problems in hypergraphs. Firstly, we show that it is NP-hard to decide, given a hypergraph $\mathcal{H}$, some $r \in V(\mathcal{H})$ and some $S \subseteq V(\mathcal{H})$, whether this hypergraph has an orientation in which every vertex of $S$ is reachable from $r$. Secondly, we show that it is NP-hard to decide, given a hypergraph $\mathcal{H}$ and some $S \subseteq V(\mathcal{H})$, whether this hypergraph has an orientation in which any two vertices in $S$ are mutually reachable from each other. This answers a longstanding open question of the Egerv\'ary Research group. On the positive side, we show that the problem of finding a Steiner hypertree and the first orientation problem can be solved in polynomial time if the number of terminals $|S|$ is fixed.
翻译:我们说,树$T$是一个美元S$S美元,如果美元S\subseteq V(T)美元,高音是美元S$S-Steiner超级树,如果它可以修成美元S$S-Steiner树的话,那么树$T$是一个美元S-Steiner树。我们证明,鉴于高音$\mathcal{H}美元和一些美元S\subseteq V(mathcal{H})美元,如果是美元S-S-Ssteineral方向的基数,美元是美元双向的基数。作为卷,我们给施泰纳在高调上的两个方向提供两个负面结果。首先,我们证明,鉴于高调$\mathcal{H}美元,决定美元V(mathcal{H}美元,有些美元问题(mathcal),V(mathcal{H}美元, 问题可能是美元(mathcal{H}美元)的基数的基数,如果这个平面图的第一个方向是美元,从每两平方美元,Seral=美元, 美元显示一个硬的基数的基数的基数是美元。